A randomized approximation algorithm for probabilistic inference on bayesian belief networks
نویسندگان
چکیده
Researchers in decision analysis and artificial intelligence (AI) have used Bayesian belief networks to build probabilistic expert systems. Using standard methods drawn from the theory of computational complexity, workers in the field have shown that the problem of probabilistic inference in belief networks is difficult and almost certainly intractable. We have developed a randomized approximation scheme, BN-RAS, for doing probabilistic inference in belief networks. The algorithm can, in many circumstances, perform efficient approximate inference in large and richly interconnected models. Unlike previously described stochastic algorithms for probabilistic inference, the randomized approximation scheme (ras) computes a priori bounds on running time by analyzing the structure and contents of the belief network. In this article, we describe BN-RAS precisely and analyze its performance mathematically.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملAn Empirical Evaluation of a Randomized Algorithm for Probabilistic Inference
In recent years, researchers in decision analysis and arti ficial intelligence (AI) have used Bayesian belief networks to build models of expert opinion. Using standard meth ods drawn from the theory of computational complex ity, workers in the field have shown that the problem of probabilistic inference in belief networks is difficult and almost certainly intractable. KNET, a software envir...
متن کاملApproximating Probabilistic Inference in Bayesian Belief Networks
A belief network comprises a graphical representation of dependencies between variables of a domain and a set of conditional probabilities associated with each dependency. Unless P=NP, an efficient, exact algorithm does not exist to compute probabilistic inference in belief networks. Stochastic simulation methods, which often improve run times, provide an alternative to exact inference algorith...
متن کاملA Bayesian analysis of simulation algorithms for inference in belief networks
A belief network is a graphical representation of the underlying probabilistic relationships in a complex system. Belief networks have been employed as a representation of uncertain relationships in computer-based diagnostic systems. These diagnostic systems provide assistance by assigning likelihoods to alternative explanatory hypotheses in response to a set of ndings or observations. Approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Networks
دوره 20 شماره
صفحات -
تاریخ انتشار 1990